Lower bounds for the approximative complexity
نویسندگان
چکیده
منابع مشابه
Some lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملLower complexity bounds for interpolation algorithms
We introduce and discuss a new computational model for Hermite–Lagrange interpolation by nonlinear classes of polynomial interpolants. We distinguish between an interpolation problem and an algorithm that solves it. Our model includes also coalescence phenomena and captures a large variety of known Lagrange-Hermite interpolation problems and algorithms. Like in traditional Hermite–Lagrange inte...
متن کاملLower Bounds for Quantum Communication Complexity
We prove new lower bounds for bounded error quantum communication complexity. Our methods are based on the Fourier transform of the considered functions. First we generalize a method for proving classical communication complexity lower bounds developed by Raz [30] to the quantum case. Applying this method we give an exponential separation between bounded error quantum communication complexity a...
متن کاملInferring Lower Bounds for Runtime Complexity
We present the first approach to deduce lower bounds for innermost runtime complexity of term rewrite systems (TRSs) automatically. Inferring lower runtime bounds is useful to detect bugs and to complement existing techniques that compute upper complexity bounds. The key idea of our approach is to generate suitable families of rewrite sequences of a TRS and to find a relation between the length...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1986
ISSN: 0304-3975
DOI: 10.1016/0304-3975(86)90038-1